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Abstract

Background: Electrocardiogram (ECG) signals are of-
ten contaminated by noise. Manual review of large ECG
databases to identify noisy signals is time-consuming. Tra-
ditional signal quality assessment algorithms often do not
generalize well or are computationally expensive. This
study developed a Temporal Convolutional Neural Net-
work (TCNN) to estimate the signal-to-noise ratio (SNR)
of ECG signals.

Method: We trained a TCNN on a proprietary database
of 134,019 12-lead ECGs without any machine or human-
added noise labels. Assuming that this data had high SNR,
we randomly selected a single lead from each ECG and
added random Gaussian noise. We then scaled the signals
and added noise to give a negatively skewed normal distri-
bution of true SNR values. We trained a TCNN to regress
low- and high-frequency pseudo-SNR values from the raw
noisy input signals.

Results: On the testing dataset, the TCNN achieved a
mean error of 0.31 + 1.80 dB and a Pearson correlation
coefficient of 0.96 for low-frequency pseudo-SNR. Simi-
larly, for high-frequency pseudo-SNR, the mean error was
0.29 + 1.63 dB and the Pearson correlation coefficient was
0.97.

Conclusion: A Temporal Convolutional Neural Net-
work can accurately estimate the SNR of unseen ECGs.

1. Introduction

Electrocardiogram (ECG) signals are often corrupted by
noise from diverse sources, including muscle noise, mo-
tion artifact, and baseline wander. [1] These noise sources
frequently overlap with the ECG frequency band of inter-
est and can exhibit similar morphologies to the genuine
ECG signal. Figure 1 depicts the normalized power spec-
tral density of various ECG components, as well as several
prevalent noise sources that overlap with the ECG spec-
tral content. This spectral overlap makes estimating the
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Figure 1. Relative power spectra of QRS complex, P and
T waves, muscle noise and motion artifacts. [2]

signal-to-noise ratio (SNR) of captured ECG signals diffi-
cult because the pure ECG signal can never be completely
separated from the inherent noise. Numerous conventional
signal quality assessment algorithms have been developed,
but many of them fail to generalize or have high process-
ing requirements. The signal-to-noise ratio of ECG signals
has a significant impact on the performance of all types
of computerized algorithms and human interpretation, but
it is rarely measured or quantified when reporting perfor-
mance metrics.

The magnitude of noise-induced distortions in the ECG
signal varies across the frequency spectrum. The color
of the noise spectrum affects the interpretability of the
ECG signal, as colored noise has a larger amplitude for
a given power than white noise. This means that for sig-
nals contaminated with brown noise (such as baseline wan-
der), the ECG signals appear much cleaner to an inter-
preter compared with signals with the same signal-to-noise
ratio contaminated with white noise (such as muscle arti-
fact). Figure 2 illustrates this point by showing ECG sig-
nals with three different noise colors added. It is clear
from this figure that the less colored signals are more dis-
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Figure 2. Zero-mean unit-variance clean ECG with ad-
ditive brown, pink, and white noise (also zero-mean and
unit-variance, and hence SNR =1 in all cases). [1]

torted, although these signals have the same SNR. Due
to this colorization effect, we have split the power spec-
trum into two distinct frequency bands and therefore re-
port both high-frequency (>=0.67 Hz) and low-frequency
(<0.67Hz) SNRs, where 0.67 Hz corresponds to a standard
ambulatory monitor high-pass filter for removing baseline
wander and respiratory effects. [3]

In this paper, we propose a Temporal Convolutional
Neural Network (TCNN) [4] based framework for estimat-
ing the high- and low-frequency pseudo-SNRs of unseen
ECG signals. Pseudo-SNRs are estimates of the true SNR,
which is never directly measurable.

2. Materials and Methods

2.1. Datasets

To train our Temporal Convolutional Neural Network
(TCNN), we extracted 134,019 ECGs from the proprietary
PulseAl worldwide ECG database. This database contains
over 1 million labelled ECGs from patients in 7 coun-
tries. The ECGs were labelled as part of standard clini-
cal care by a cardiologist or emergency medicine physi-
cian. For this study, we selected only ECGs that did not
have any machine- or human-added noise labels and that
had machine-generated median beats available. To calcu-
late SNRs, we used the same methodology for calculating
signal and noise powers as the NST application [5] in the
PhysioNet WFDB software package [6, 7].

To simplify the creation of ECGs with known SNRs, we
assumed that the selected ECGs represent signals with zero
noise power and therefore infinite SNR. Although this as-
sumption is never strictly true, it simplifies the creation
of the signals and has a limited impact on model perfor-
mance because, although such signals do contain some

noise power, it is typically very small.

To create the additive noise, we used a Gaussian noise
spectrum generator to create random noise with coloriza-
tion exponents in the range [0, 2]. This noise was then
zero-phase low-pass filtered at 150 Hz to remove ex-
tremely high frequencies, corresponding to the cutoff fre-
quency of most 12-lead ECG machines. [3] The noise sig-
nal was then zero-phase high-pass filtered at 0.67 Hz to re-
move low-frequency components, and the noise power of
the remaining high-frequency noise was calculated. The
residual of the 0.67 Hz filter represents the low-frequency
noise power, which was also measured.

To generate a spread of target SNRs that replicates real-
world data, we created target SNR distributions based
on negatively skewed normal distributions with parame-
ters « = —4, p = 24 and o0 = 15 for both high and
low-frequency SNRs. We then scaled the measured ECG
and noise signals to replicate these distributions, giving
us our complete dataset of known SNR signals. We split
this dataset into training (75%) and held-out test (25%)
sets. To check for overfitting, we also tested the model
on records from the Physionet Noise Stress Test Database
(NSTDB) [6, 8].

2.2. Temporal Convolutional Neural Net-
work

In this work, we trained a TCNN to predict the pseudo-
SNR of previously unseen ECG signals. A TCNN archi-
tecture is well-suited for this task because dilated causal
convolutions allow the network to have extremely large re-
ceptive fields, which is advantageous given the relatively
high sampling frequency of ECG signals. Figure 3 shows
a visualization of a stack of dilated causal convolutional
layers, with the black arrows indicating the receptive field
of the network on the input signal. This structure allows
TCNNS s to exhibit longer memory than recurrent architec-
tures of the same size, and also allows parallelism, which
reduces training and inference time.

Our TCNN was trained using Keras [10] and keras-
ten [11]. The model takes 10 seconds of single lead
ECG data sampled at 360 Hz as input and regresses two
numbers: the low-frequency psuedo-SNR and the high-
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Figure 3.  Simplified visualization of stacked dilated
causal convolutional layers utilized in a TCNN. [9]
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frequency psuedo-SNR. The model contained 8 layers,
with the dilation factor increasing by 2 upon each new
layer, in the same way as Figure 3. The kernel size for
all convolutions was 9, and there were 128 filters per layer.
The model also utilized residual blocks, dropout, and batch
normalization. The model was trained using the Adam op-
timizer with a learning rate of 3e-4 and mean squared error
loss. It consisted of 2.2 million parameters in total.

3. Results

3.1. Low Frequency Signal-to-Noise Ratio

On the held-out test set, the model achieved excellent
performance in predicting low-frequency pseudo-SNR.
Figure 4 shows a scatter plot of the results, with a Pearson
correlation coefficient of 0.96 for the linear least-squares
regression fit. Figure 5 shows a Bland-Altman plot of the
true versus predicted low-frequency SNR values, with a
mean difference of 0.32 dB and a standard deviation of
1.80 dB.
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Figure 4. Scatter plot with linear regression fit showing
the true low-frequency SNR versus the TCNN-predicted
pseudo-SNR.

3.2. High Frequency Signal-to-Noise Ratio

The model also achieved excellent accuracy in pre-
dicting high-frequency pseudo-SNR, similar to its perfor-
mance on low-frequency pseudo-SNR. Figure 6 shows
a scatter plot of the high-frequency pseudo-SNR results,
with a Pearson correlation coefficient of 0.97 for the lin-
ear least-squares regression fit. Figure 7 shows a Bland-
Altman plot of the true versus predicted high-frequency
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Figure 5. Bland-Altman plot of the true versus predicted
low-frequency SNR values. The green line represents the
mean difference; the red lines represent values for the
mean +1.96 standard deviations.

SNR values, with a mean difference of 0.29 dB and a stan-
dard deviation of 1.63 dB.

3.3. Noise Stress Test Database

To ensure that the model did not simply memorize the
artificial noise generation process, we also evaluated it
on records from the Physionet Noise Stress Test Database
(NSTDB) [6, 8]. Figure 8 shows the time-varying pseudo-
SNR values for record 118 (SNR -6 dB). For brevity, we
do not present the full results for this dataset here, but it is
clear that the pseudo-SNR values rise and fall correspond-
ing to the times when noise was added.

4. Conclusion

A Temporal Convolutional Neural Network (TCNN)
can accurately estimate the signal-to-noise ratio (SNR) of
previously unseen ECGs. TCNNs can be parallelized and
accelerated on GPUs, allowing this solution to automati-
cally quantify SNR characteristics at scale.
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Figure 6. Scatter plot with linear regression fit showing
the true high-frequency SNR versus the TCNN-predicted
pseudo-SNR.
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Figure 7. Bland-Altman plot of the true versus predicted
high-frequency SNR values. The green line represents
the mean difference; the red lines represent values for the
mean +1.96 standard deviations.
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Figure 8. Time varying psuedo-SNRs for NSTDB record

118 (SNR -6 dB). The shaded gray areas indicate times
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when noise was added to the signal.
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